Really Naturally Linear Indexed Type Checking

Arthur Azevedo de Amorim1, Marco Gaboardi2, Emilio Jesús Gallego Arias1, Justin Hsu1

1University of Pennsylvania
2University of Dundee

October 2, 2014
Check properties via types

- Type safety
- Parametricity
- Non-interference
In the beginning...

Check properties via types
• Type safety
• Parametricity
• Non-interference
In the beginning...

Check properties via types

- Type safety
- Parametricity
- Non-interference
Properties model quantitative information

- Numerical robustness
- Probabilistic assertions
- Differential privacy
Properties model quantitative information

- Numerical robustness
- Probabilistic assertions
- Differential privacy
Properties model quantitative information

- Numerical robustness
- Probabilistic assertions
- Differential privacy

- how robust?
- how likely?
Properties model quantitative information

- Numerical robustness
- Probabilistic assertions
- Differential privacy
More recently

Properties model quantitative information

- Numerical robustness: how robust?
- Probabilistic assertions: how likely?
- Differential privacy: how private?

Properties not just true or false
Typechecking quantitative languages is tricky

- May need to solve numeric constraints
- Typechecking may not be decidable
- May need heuristics to make typechecking practical
Typechecking quantitative languages is tricky

- May need to solve numeric constraints
- Typechecking may not be decidable
- May need heuristics to make typechecking practical

Our goal

- Design and implement a typechecking algorithm for DFuzz, a language for verifying differential privacy
The plan today

- A DFuzz crash course
- The problem with standard approaches
- Modifying the DFuzz language to ease typechecking
- Decidability and heuristics
Differential privacy [DMNS06]

- Rigorous definition of privacy for randomized programs
- Idea: random noise should “conceal” an individual’s data
- Quantitative: measure how private a program is
- Close connection to sensitivity analysis

The quantitative property
R-sensitive function
R-sensitive function
R-sensitive function
R-sensitive function
R-sensitive function
R-sensitive function

$f()$
A language for differential privacy

DFuzz [GHHNP13]

- Type system for differentially private programs
- Use linear logic to model sensitivity
- Combine with (lightweight) dependent types
Types

\[\tau ::= \mathbb{N} \mid \tau \oplus \tau \mid \tau \otimes \tau \mid ! \tau \rightarrow \tau \mid \forall i. \tau \]
In a little more detail...

Types

\[\tau ::= \mathbb{N} \; [R] \mid \tau \oplus \tau \mid \tau \otimes \tau \mid ! \; R \; \tau \rightarrow \tau \mid \forall i. \; \tau \]

Contexts

\[\Gamma ::= \cdot \mid \Gamma, x : [R] \; \tau \]
In a little more detail...

Types

\[\tau ::= \mathbb{N} \ [R] \ | \ \tau \oplus \tau \ | \ \tau \otimes \tau \ | \ !_{R} \ \tau \rightarrow \tau \ | \ \forall i. \ \tau \]

Contexts

\[\Gamma ::= \cdot \ | \ \Gamma, x : [R] \ \tau \]

Typing judgment

\[\Gamma \vdash e : \tau \]
Sensitivity reading

- Functions \(R \tau_1 \rightarrow \tau_2 \): \(R \)-sensitive functions
- Changing input by \(d \) changes output by at most \(R \cdot d \)
Sensitivity analysis

R-sensitive function

$R d < f d$
Sensitivity reading

- Functions $!_{R \tau_1} \circ \tau_2$: R-sensitive functions
- Changing input by d changes output by at most $R \cdot d$
Sensitivity reading

- Functions $!_{R \tau_1} \to \tau_2$: R-sensitive functions
- Changing input by d changes output by at most $R \cdot d$

Subtyping

- “A 1-sensitive function is also a 2-sensitive function”
- Subtyping: weaken sensitivity bound

\[
!_{R \tau} \to \tau_2 \sqsubseteq!_{R' \tau_1} \to \tau_2 \quad \text{if} \quad R \leq R'
\]
In a little more detail...

Types

\[\tau ::= \mathbb{N} \mid [R] \mid \tau \oplus \tau \mid \tau \otimes \tau \mid !_R \tau \rightarrow \tau \mid \forall i. \tau \]

Contexts

\[\Gamma ::= \cdot \mid \Gamma, x : [R] \tau \]

Typing judgment

\[\Gamma \vdash e : \tau \]
Types

\[\tau ::= \mathbb{N} \mid \tau \oplus \tau \mid \tau \otimes \tau \mid ! \tau \rightarrow \tau \mid \forall i. \tau \]

Contexts

\[\Gamma ::= \cdot \mid \Gamma, x : \mathbb{N} \]

Typing judgment

\[\Gamma \vdash e : \tau \]
The sensitivity language

Grammar

\[R ::= \ i_R \mid i_N \mid \mathbb{R} \mid R + R \mid R \cdot R \]
The sensitivity language

Grammar

\[R ::= i_R | i_N | \mathbb{R} | R + R | R \cdot R \]

variables over real/naturals

Sensitivity not known statically

- DFuzz is dependent!
- Sensitivity may depend on inputs (length of list, number of iterations, etc.)

What does this mean for typechecking?

- Sensitivities are polynomials over reals and naturals
- How to check subtyping?
The sensitivity language

Grammar

\[R ::= i_R \mid i_N \mid \mathbb{R} \mid R + R \mid R \cdot R \]

Sensitivity not known statically

- DFuzz is dependent!
- Sensitivity may depend on inputs (length of list, number of iterations, etc.)
Types

\[\tau ::= \mathbb{N}^{[R]} | \tau \bigoplus \tau | \tau \otimes \tau | !^R \tau \rightarrow \tau | \forall i. \tau \]

Contexts

\[\Gamma ::= \cdot | \Gamma, x :^{[R]} \tau \]

Typing judgment

\[\Gamma \vdash e : \tau \]
The sensitivity language

Grammar

\[R ::= i_R | i_N | R | R + R | R \cdot R \]

Sensitivity not known statically

- DFuzz is dependent!
- Sensitivity may depend on inputs (length of list, number of iterations, etc.)
The sensitivity language

Grammar

\[R ::= i_\mathbb{R} \mid i_\mathbb{N} \mid \mathbb{R} \mid R + R \mid R \cdot R \]

Sensitivity not known statically

- DFuzz is dependent!
- Sensitivity may depend on inputs (length of list, number of iterations, etc.)

What does this mean for typechecking?

- Sensitivities are **polynomials** over reals and naturals
- How to check subtyping?
Sensitivity reading

- Functions $!_{R \tau_1} \to \tau_2$: R-sensitive functions
- Changing input by d changes output by at most $R \cdot d$

Subtyping

- “A 1-sensitive function is also a 2-sensitive function”
- Subtyping: weaken sensitivity bound

\[!_{R \tau} \to \tau_2 \sqsubseteq !_{R' \tau_1} \to \tau_2 \quad \text{if} \quad R \leq R' \]
Sensitivity reading

- Functions \(!_{R\tau_1} \rightarrow \tau_2 \): \(R \)-sensitive functions
- Changing input by \(d \) changes output by at most \(R \cdot d \)

Subtyping

- “A 1-sensitive function is also a 2-sensitive function”
- Subtyping: weaken sensitivity bound

\[
!_{R\tau} \rightarrow \tau_2 \sqsubseteq !_{R'\tau_1} \rightarrow \tau_2 \quad \text{if} \quad R \leq R'
\]
Assume

- Can extract type skeleton from term
- Given annotated term, compute best type
Assume

- Can extract type **skeleton** from term
- Given annotated term, compute **best** type

Annotations
- We need: fully annotated argument types of all functions
- Other more minor annotations
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type w.r.t. subtyping
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type w.r.t. subtyping
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type

Annotations

- We need: fully annotated argument types of all functions

\[
\begin{align*}
\text{!} & \quad \tau_1 \quad \text{⇒} \quad \tau_2 \\
\end{align*}
\]
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type

Annotations

- We need: fully annotated argument types of all functions

\[\tau_1 \rightarrow \tau_2 \]

annot.
Assume

- Can extract type skeleton from term
- Given annotated term, compute best type

Annotations

- We need: fully annotated argument types of all functions
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type

Annotations

- We need: fully annotated argument types of all functions

\[\tau_1 \rightarrow^o \tau_2 \]

! ?? no annot. annot. no annot.
The typechecking problem

Assume

- Can extract type skeleton from term
- Given annotated term, compute best type

Annotations

- We need: fully annotated argument types of all functions

\[
! \ \ ?? \quad \tau_1 \quad \rightarrow \quad \tau_2
\]

- Other more minor annotations
The typechecking problem

Input

- Annotated term e
- Annotated context skeleton Γ^\bullet:

\[
\begin{align*}
 x : & \quad ?? \quad \tau
\end{align*}
\]
The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ^\bullet:

\[x : \text{??} \quad \tau \]

no annot.
The typechecking problem

Input

- Annotated term e
- Annotated context skeleton Γ^\bullet:

\[
x : \text{??} \quad \tau \quad \text{annotate.}
\]

\[
\text{no annotate.}
\]
The typechecking problem

Input

• Annotated term e
• Annotated context skeleton Γ^\bullet:

Output

• Type τ^* and context Γ with $\Gamma \vdash e : \tau^*$
• Most precise context and type (with respect to subtyping)
“Bottom-up” typechecking

- For each premise, compute best context and type
- Combine outputs from premises to get context and type
"Bottom-up" typechecking

- For each premise, compute best context and type
- Combine outputs from premises to get context and type

Example: function application

\[\Gamma \vdash e_1 : !_{R \sigma} \rightarrow \tau \quad \Delta \vdash e_2 : \sigma \]

\[\Gamma + R \cdot \Delta \vdash e_1 \ e_2 : \tau \]

1. Given \((e_1 \ e_2, \Gamma^\bullet)\)
“Bottom-up” typechecking

- For each premise, compute best context and type
- Combine outputs from premises to get context and type

Example: function application

\[\Gamma \vdash e_1 : !R \sigma \to \tau \quad \Delta \vdash e_2 : \sigma \]
\[\Gamma + R \cdot \Delta \vdash e_1 e_2 : \tau \]

1. Given \((e_1, e_2, \Gamma^\bullet)\)
2. Call typechecker on \((e_1, \Gamma^\bullet)\), get \((!R \sigma \to \tau, \Gamma)\)
“Bottom-up” typechecking

- For each premise, compute best context and type
- Combine outputs from premises to get context and type

Example: function application

\[
\begin{array}{c}
\Gamma \vdash e_1 : !R\sigma \rightarrow \tau \\
\Delta \vdash e_2 : \sigma \\
\hline
\Gamma + R \cdot \Delta \vdash e_1 e_2 : \tau
\end{array}
\]

1. Given \((e_1, e_2, \Gamma^\bullet)\)
2. Call typechecker on \((e_1, \Gamma^\bullet)\), get \((!R\sigma \rightarrow \tau, \Gamma)\)
3. Call typechecker on \((e_2, \Delta^\bullet)\), get \((\sigma', \Delta)\)
“Bottom-up” typechecking

- For each premise, compute best context and type
- Combine outputs from premises to get context and type

Example: function application

\[
\Gamma \vdash e_1 : ! R \sigma \rightarrow \tau \\
\Delta \vdash e_2 : \sigma
\]

\[
\Gamma + R \cdot \Delta \vdash e_1 \, e_2 : \tau
\]

1. Given \((e_1 \, e_2, \Gamma^*)\)
2. Call typechecker on \((e_1, \Gamma^*)\), get \((! R \sigma \rightarrow \tau, \Gamma)\)
3. Call typechecker on \((e_2, \Delta^*)\), get \((\sigma', \Delta)\)
4. Check \(\sigma' \sqsubseteq \sigma\), output \((\tau, \Gamma + R \cdot \Delta)\)
A problem with the bottom-up approach

- Some DFuzz rules have form

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \\
\Gamma \vdash \ldots : \ldots
\]
A problem with the bottom-up approach

- Some DFuzz rules have form

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \\
\Gamma \vdash \cdots : \cdots
\]
A problem with the bottom-up approach

- Some DFuzz rules have form

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2
\]

\[
\Gamma \vdash \ldots : \ldots
\]
A problem with the bottom-up approach

- Some DFuzz rules have form
 \[\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \]
 \[\Gamma \vdash \ldots : \ldots \]

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
“Minimal” types?

A problem with the bottom-up approach

- Some DFuzz rules have form

\[
\frac{\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2}{\Gamma \vdash \ldots : \ldots}
\]

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
- But what context do we output?
“Minimal” context?

First try

- Have $x : [R_1] \sigma$ and $x : [R_2] \sigma$
- Most precise context should be $x : [\max(R_1, R_2)] \sigma$
- But DFuzz doesn’t have $\max(R_1, R_2)$...
The sensitivity language

Grammar

\[R ::= \ i_R \mid i_N \mid R \mid R + R \mid R \cdot R \]
First try

- Have $x : [R_1] \sigma$ and $x : [R_2] \sigma$
- Most precise context should be $x : [\text{max}(R_1, R_2)] \sigma$
- But DFuzz doesn’t have $\text{max}(R_1, R_2)$...
First try

- Have $x : [R_1] \sigma$ and $x : [R_2] \sigma$
- Most precise context should be $x : [\max(R_1, R_2)] \sigma$
- But DFuzz doesn’t have $\max(R_1, R_2)$...

Max of two polynomials may not be polynomial!
The idea: enrich DFuzz

EDFuzz: E(xtended) DFuzz

- Sensitivity language in DFuzz is “incomplete” for typechecking
- Add constructions like \(\text{max}(R_1, R_2) \) to sensitivity language
- Typecheck EDFuzz programs instead
EDFuzz: *E*(xtended) D*Fuzz*

- Sensitivity language in DFuzz is “incomplete” for typechecking
- Add constructions like \(\max(R_1, R_2) \) to sensitivity language
- Typecheck EDFuzz programs instead

Relation with DFuzz

- Extension: all DFuzz programs still valid EDFuzz programs
- Preserve metatheory
- Bottom-up typechecking simple, works
Previously problematic rule

\[
\begin{align*}
\Gamma &\vdash e_1 : \sigma_1 & \Gamma &\vdash e_2 : \sigma_2 \\
\hline
\Gamma &\vdash \ldots : \ldots
\end{align*}
\]
Previously problematic rule

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \\
\Gamma \vdash \ldots : \ldots
\]

Now: no problem

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
How does this fix the problem?

Previously problematic rule

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \\
\hline
\Gamma \vdash \ldots : \ldots
\]

Now: no problem

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
Previously problematic rule

\[
\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2
\]

\[
\Gamma \vdash \ldots : \ldots
\]

Now: no problem

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
How does this fix the problem?

Previously problematic rule

\[\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \]
\[\Gamma \vdash \ldots : \ldots \]

Now: no problem

- Running algorithm gives \((\sigma_1, \Gamma_1)\) and \((\sigma_2, \Gamma_2)\)
- For
 \[x : [R_1] \sigma \in \Gamma_1 \quad \text{and} \quad x : [R_2] \sigma \in \Gamma_2, \]
 put \(x : [\max(R_1, R_2)] \sigma \) in output context
How does this fix the problem?

Previously problematic rule

\[\Gamma \vdash e_1 : \sigma_1 \quad \Gamma \vdash e_2 : \sigma_2 \]

\[\Gamma \vdash \ldots : \ldots \]

Now: no problem

- Running algorithm gives (\(\sigma_1, \Gamma_1\)) and (\(\sigma_2, \Gamma_2\))
- For
 \[x : [R_1] \sigma \in \Gamma_1 \quad \text{and} \quad x : [R_2] \sigma \in \Gamma_2, \]
 put \(x : [\max(R_1, R_2)] \sigma \) in output context
- Return \(\max(R_1, R_2) \) as context
Bad news

- Must check inequalities over reals and natural polynomials
- Subtype relation is undecidable
- Even checking validity of derivations is undecidable
- Problem for both DFuzz and EDFuzz
Bad news

- Must check inequalities over reals and natural polynomials
- Subtype relation is undecidable
- Even checking validity of derivations is undecidable
- Problem for both DFuzz and EDFuzz

Good news

- Constraint solvers are pretty good in practice
- Typical DFuzz programs rely on easy constraints
Checking the constraints

Special structure of constraints

- Allow standard (DFuzz) annotations only
- Subtyping only needs to check

\[R \geq R^*, \]

where \(R \) is a DFuzz sensitivity and \(R^* \) is a EDFuzz sensitivity

- \(R \) understood by standard numeric solvers
- \(R^* \) has extended terms like \(\max(R_1, R_2), \ldots \)
Idea: eliminate extended terms

- Change $R \geq \max(R_1^*, R_2^*)$ to

$$R \geq R_1^* \land R \geq R_2^*$$

- Recursively eliminate comparisons $R \geq R^*$
- Similar technique for other new sensitivity constructions
It works!

- Dispatches numeric constraints to Why3
- Typechecks examples from the DFuzz paper with no problems
- Annotation burden light on these examples
Lessons learned

- Typechecking with quantitative constraints is tricky
- Numeric solvers are quite good, even for undecidable problems
- Minor details in original language can have huge effects on how easy it is to use standard solvers
- Keep typechecking in mind!
Lessons learned

- Typechecking with quantitative constraints is tricky
- Numeric solvers are quite good, even for undecidable problems
- Minor details in original language can have huge effects on how easy it is to use standard solvers
- Keep typechecking in mind!

Open questions

- Does this technique of “completing” a language to ease typechecking apply to other quantitative type systems?
- Can we remove the argument type annotation in functions?
Really Naturally Linear Indexed Type Checking

Arthur Azevedo de Amorim1, Marco Gaboardi2, Emilio Jesús Gallego Arias1, Justin Hsu1

1University of Pennsylvania
2University of Dundee

October 2, 2014
Problematic rule

\[
\Gamma \vdash e : \sigma \quad i \text{ fresh in } \Gamma
\]

\[
\Gamma \vdash \Lambda i : \kappa. \ e : \forall i : \kappa. \sigma
\]

Avoidance problem

- Running typechecker on \((e, \Gamma^\bullet)\) yields \((\sigma, \Gamma)\)
- For \(x : [R] \sigma \in \Gamma\), want smallest \(R^*\) bigger than \(R\) but independent of \(i\)
- Again: \(R^*\) may lie outside sensitivity language
- Add construction \(\text{sup}(R, i)\) to EDFuzz