Proving Expected Sensitivity of Probabilistic Programs

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu
Pierre-Yves Strub
Program Sensitivity

Similar inputs \rightarrow similar outputs

- Given: distances d_{in} on inputs, d_{out} on outputs
- Want: for all inputs in_1, in_2,

$$d_{out}(P(in_1), P(in_2)) \leq d_{in}(in_1, in_2)$$
Program Sensitivity

Similar inputs \rightarrow similar outputs

- Given: distances d_{in} on inputs, d_{out} on outputs
- Want: for all inputs in_1, in_2,

$$d_{\text{out}}(P(in_1), P(in_2)) \leq d_{\text{in}}(in_1, in_2)$$

If P is sensitive and Q is sensitive, then $Q \circ P$ is sensitive.
Probabilistic Program Sensitivity?

Similar inputs \rightarrow similar output distributions

- Given: distances d_{in} on inputs, d_{out} on output distributions
- Want: for all inputs in_1, in_2,

$$d_{out}(P(in_1), P(in_2)) \leq d_{in}(in_1, in_2)$$
Probabilistic Program Sensitivity?

Similar inputs \rightarrow similar output distributions

- Given: distances d_{in} on inputs, d_{out} on output distributions
- Want: for all inputs in_1, in_2,

\[d_{out}(P(in_1), P(in_2)) \leq d_{in}(in_1, in_2) \]

What distance d_{out} should we take?
Our contributions

- Coupling-based definition of probabilistic sensitivity
- Relational program logic \mathcal{EPRHL}
- Formalized examples: stability and convergence
What is a good definition of probabilistic sensitivity?
One possible definition: output distributions close

For two distributions μ_1, μ_2 over a set A:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot \max_{E \subseteq A} |\mu_1(E) - \mu_2(E)|$$
One possible definition: output distributions close

For two distributions μ_1, μ_2 over a set A:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot \max_{E \subseteq A} |\mu_1(E) - \mu_2(E)|$$

k-Uniform sensitivity

- Larger $k \rightarrow$ closer output distributions
- Strong guarantee: probabilities close for all sets of outputs
Probabilistic program forgets initial state

- Given: probabilistic loop, two different input states
- Want: state distributions converge to same distribution
Probabilistic program forgets initial state

- Given: probabilistic loop, two different input states
- Want: state distributions converge to same distribution

Consequence of k-uniform sensitivity

- As number of iterations T increases, prove k-uniform sensitivity for larger and larger $k(T)$
- Relation between k and T describes speed of convergence
Another possible definition: average outputs close

For two distributions μ_1, μ_2 over real numbers:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot |E[\mu_1] - E[\mu_2]|$$

Mean sensitivity
▶ Larger k → closer averages
▶ Weaker guarantee than uniform sensitivity
Another possible definition: average outputs close

For two distributions μ_1, μ_2 over real numbers:

$$d_{out}(\mu_1, \mu_2) \triangleq k \cdot |\mathbb{E}[\mu_1] - \mathbb{E}[\mu_2]|$$

k-Mean sensitivity

- Larger $k \rightarrow$ closer averages
- Weaker guarantee than uniform sensitivity
Application: algorithmic stability

Machine learning algorithm A

- Input: set S of training examples
- Output: list of numeric parameters (randomized)

Danger: overfitting

- Output parameters depend too much on training set S
- Low error on training set, high error on new examples
Application: algorithmic stability

One way to prevent overfitting

- L maps S to **average error** of randomized learning algorithm A

- If $|L(S) - L(S')|$ is small for all training sets S, S' differing in a single example, then A does not overfit too much
Application: algorithmic stability

One way to prevent overfitting

- L maps S' to **average error** of randomized learning algorithm A
- If $|L(S') - L(S'')|$ is small for all training sets S, S' differing in a single example, then A does not overfit too much

L should be **mean sensitive**
Wanted: a general definition that is ...

- Expressive
- Easy to reason about
A coupling models two distributions with one distribution. Given two distributions \(\mu_1, \mu_2 \in \text{Distr}(A) \), a joint distribution \(\mu \in \text{Distr}(A \times A) \) is a coupling if

\[
\pi_1(\mu) = \mu_1 \quad \text{and} \quad \pi_2(\mu) = \mu_2
\]
A coupling models two distributions with one distribution. Given two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$, a joint distribution $\mu \in \text{Distr}(A \times A)$ is a coupling if

$$\pi_1(\mu) = \mu_1 \quad \text{and} \quad \pi_2(\mu) = \mu_2$$

Typical pattern
Prove property about two (output) distributions by constructing a coupling with certain properties.
Ingredient #2: Lift distance on outputs

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d : A \times A \to \mathbb{R}^+$
Ingredient #2: Lift distance on outputs

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d : A \times A \to \mathbb{R}^+$

Define distance on distributions:

$$d^\#(\mu_1, \mu_2) \triangleq \min_{\mu \in C(\mu_1, \mu_2)} \mathbb{E}_\mu[d]$$
Ingredient #2: Lift distance on outputs

Given:

- Two distributions \(\mu_1, \mu_2 \in \text{Distr}(A) \)
- Ground distance \(d : A \times A \to \mathbb{R}^+ \)

Define distance on distributions:

\[
\#(\mu_1, \mu_2) \triangleq \min_{\mu \in C(\mu_1, \mu_2)} \mathbb{E}_\mu[d]
\]

(set of all couplings)
Ingredient #2: Lift distance on outputs

Given:

- Two distributions $\mu_1, \mu_2 \in \text{Distr}(A)$
- Ground distance $d : A \times A \to \mathbb{R}^+$

Define distance on distributions:

$$d^\#(\mu_1, \mu_2) \triangleq \min_{\mu \in C(\mu_1, \mu_2)} \mathbb{E}_\mu[d]$$

Typical pattern

Bound distance $d^\#$ between two (output) distributions by constructing a coupling with small average distance d
Putting it together: Expected sensitivity

Given:

- A function $f : A \rightarrow \text{Distr}(B)$ (think: probabilistic program)
- Distances d_{in} and d_{out} on A and B
Putting it together: Expected sensitivity

Given:

- A function $f: A \rightarrow \text{Distr}(B)$ (think: probabilistic program)
- Distances d_{in} and d_{out} on A and B

We say f is (d_{in}, d_{out})-expected sensitive if:

$$d_{\#}^{\text{out}}(f(a_1), f(a_2)) \leq d_{\text{in}}(a_1, a_2)$$

for all inputs $a_1, a_2 \in A$.
Benefits: Expressive

If $d_{out}(b_1, b_2) > k$ for all distinct b_1, b_2:

$$(d_{in}, d_{out})\text{-expected sensitive} \iff k\text{-uniform sensitive}$$
Benefits: Expressive

If \(d_{out}(b_1, b_2) > k \) for all distinct \(b_1, b_2 \):

\[
(d_{in}, d_{out})\text{-expected sensitive} \implies k\text{-uniform sensitive}
\]

If outputs are real-valued and \(d_{out}(b_1, b_2) = k \cdot |b_1 - b_2| \):

\[
(d_{in}, d_{out})\text{-expected sensitive} \implies k\text{-mean sensitive}
\]
Benefits: Easy to reason about

▶ Work in terms of distances on ground sets
▶ No need to work with complex distances over distributions

f: $A \rightarrow \text{Distr}(B)$ is (d_A, d_B)-expected sensitive

g: $B \rightarrow \text{Distr}(C)$ is (d_B, d_C)-expected sensitive

$g \circ f$: $A \rightarrow \text{Distr}(C)$ is (d_A, d_C)-expected sensitive
Benefits: Easy to reason about

\[f : A \rightarrow \text{Distr}(B) \text{ is } (d_A, d_B)\text{-expected sensitive} \]
Benefits: Easy to reason about

\[f : A \rightarrow \text{Distr}(B) \text{ is } (d_A, d_B)\text{-expected sensitive} \]
\[g : B \rightarrow \text{Distr}(C) \text{ is } (d_B, d_C)\text{-expected sensitive} \]
Benefits: Easy to reason about

\[f : A \rightarrow \text{Distr}(B) \text{ is } (d_A, d_B)\text{-expected sensitive} \]
\[g : B \rightarrow \text{Distr}(C) \text{ is } (d_B, d_C)\text{-expected sensitive} \]

\[g \circ f : A \rightarrow \text{Distr}(C) \text{ is } (d_A, d_C)\text{-expected sensitive} \]
Benefits: Easy to reason about

\[f : A \rightarrow \text{Distr}(B) \text{ is } (d_A, d_B)-\text{expected sensitive} \]
\[g : B \rightarrow \text{Distr}(C) \text{ is } (d_B, d_C)-\text{expected sensitive} \]

\[g \circ f : A \rightarrow \text{Distr}(C) \text{ is } (d_A, d_C)-\text{expected sensitive} \]

Abstract away distributions

- Work in terms of distances on ground sets
- No need to work with complex distances over distributions
How to verify this property?

The program logic \mathcal{E}PRHL
A relational program logic $\mathcal{E}PRHL$

The pWhile imperative language

$$c ::= x \leftarrow e \mid x \leftarrow d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c$$
The pWhile imperative language

\[c ::= x \leftarrow e \mid x \leftarrow^{\$} d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c \]
A relational program logic EPRL

The pWhile imperative language

\[c ::= x \gets e \mid x \xleftarrow{\$} d \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c \]

Judgments

\[\vdash \{ P; d_{in} \} \quad c_1 \sim c_2 \quad \{ Q; d_{out} \} \]

- Tagged program variables: \(x^{(1)}, x^{(2)}\)
- \(P\) and \(Q\): boolean predicates over tagged variables
- \(d_{in}\) and \(d_{out}\): real-valued expressions over tagged variables
A judgment

\[\Gamma \vdash \{P; d_{in}\} \ c_1 \sim c_2 \ \{Q; d_{out}\} \]

is valid if:
for all input memories \((m_1, m_2)\) satisfying pre-condition \(P\),
there exists a coupling of outputs \([c_1]m_1, [c_2]m_2\) with

- support satisfying post-condition \(Q\)
- \(\mathbb{E}[d_{out}] \leq d_{in}(m_1, m_2)\)
One proof rule: Sequential composition

\[\vdash \{ P; d_A \} \ c_1 \sim c_2 \ \{ Q; d_B \} \]

\[\vdash \{ Q; d_B \} \ c'_1 \sim c'_2 \ \{ R; d_C \} \]

\[\vdash \{ P; d_A \} \ c_1; c'_1 \sim c_2; c'_2 \ \{ R; d_C \} \]
One proof rule: Sequential composition

\[
\vdash \{ P; d_A \} \quad c_1 \sim c_2 \quad \{ Q; d_B \}
\]

\[
\vdash \{ Q; d_B \} \quad c'_1 \sim c'_2 \quad \{ R; d_C \}
\]

\[
\vdash \{ P; d_A \} \quad c_1; c'_1 \sim c_2; c'_2 \quad \{ R; d_C \}
\]
One proof rule: Sequential composition

\[\vdash \{ P; d_A \} \ c_1 \sim c_2 \ \{ Q; d_B \} \]
\[\vdash \{ Q; d_B \} \ c'_1 \sim c'_2 \ \{ R; d_C \} \]
\[\vdash \{ P; d_A \} \ c_1; c'_1 \sim c_2; c'_2 \ \{ R; d_C \} \]
One proof rule: Sequential composition

\[\vdash \{ P; d_A \} \quad c_1 \sim c_2 \quad \{ Q; d_B \} \]

\[\vdash \{ Q; d_B \} \quad c'_1 \sim c'_2 \quad \{ R; d_C \} \]

\[\vdash \{ P; d_A \} \quad c_1; c'_1 \sim c_2; c'_2 \quad \{ R; d_C \} \]
One proof rule: Sequential composition

\[\models \{ P; d_A \} \quad c_1 \sim c_2 \quad \{ Q; d_B \} \]

\[\models \{ Q; d_B \} \quad c'_1 \sim c'_2 \quad \{ R; d_C \} \]

\[\models \{ P; d_A \} \quad c_1; c'_1 \sim c_2; c'_2 \quad \{ R; d_C \} \]

Expected sensitivity composes
Wrapping up
More in the paper

Theoretical results
- Full proof system (sampling, conditionals, loops, etc.)
- Transitivity principle (internalizes path coupling)

Implementation in EasyCrypt, formalizations of:
- Stability for the Stochastic Gradient Method
- Convergence for the RSM population dynamics
- Mixing for the Glauber dynamics
Looking forward

Possible directions

- Other useful consequences of expected sensitivity?
- Formal verification systems beyond program logics?
- How to automate this proof technique?

Shameless plug: Looking for students at UWisconsin!

two.osf/three.osf
Looking forward

Possible directions

- Other useful consequences of expected sensitivity?
- Formal verification systems beyond program logics?
- How to automate this proof technique?

Shameless plug: Looking for students at UWisconsin!
Proving Expected Sensitivity of Probabilistic Programs

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu
Pierre-Yves Strub
Our contributions

• Coupling-based definition of probabilistic sensitivity

• Relational program logic $\mathbb{E}PrHL$

• Formalized examples: stability and convergence