A Probabilistic Separation Logic

Justin Hsu
UW–Madison
Computer Sciences
Brilliant Collaborators

Gilles Barthe Kevin Liao

Jialu Bao Simon Docherty Alexandra Silva
What Is Independence, Intuitively?

Two random variables x and y are independent if they are uncorrelated: the value of x gives no information about the value or distribution of y.

independent
Things that are independent

Fresh random samples
- x is the result of a fair coin flip
- y is the result of another, “fresh” coin flip
- More generally: “separate” sources of randomness

Uncorrelated things
- x is today’s winning lottery number
- y is the closing price of the stock market
Things that are not independent

Re-used samples

- x is the result of a fair coin flip
- y is the result of the same coin flip

Common cause

- x is today’s ice cream sales
- y is today’s sunglasses sales
What Is Independence, Formally?

Definition

Two random variables x and y are independent (in some implicit distribution over x and y) if for all values a and b:

$$\Pr(x = a \land y = b) = \Pr(x = a) \cdot \Pr(y = b)$$

That is, the distribution over (x, y) is the product of a distribution over x and a distribution over y.
Why Is Independence Useful for Program Reasoning?

Ubiquitous in probabilistic programs
▶ A “fresh” random sample is independent of the state.

Simplifies reasoning about groups of variables
▶ Complicated: general distribution over many variables
▶ Simple: product of distributions over each variable

Preserved under common program operations
▶ Local operations independent of “separate” randomness
▶ Behaves well under conditioning (prob. control flow)
Reasoning about Independence: Challenges

Formal definition isn’t very promising

- Quantification over all values: lots of probabilities!
- Computing exact probabilities: often difficult

How can we leverage the intuition behind probabilistic independence?
Main Observation: Independence is Separation

Two variables x and y in a distribution μ are independent if μ is the product of two distributions μ_x and μ_y with disjoint domains, containing x and y.

Leverage separation logic to reason about independence

- Pioneered by O’Hearn, Reynolds, and Yang
- Highly developed area of program verification research
- Rich logical theory, automated tools, etc.
Our Approach: Two Ingredients

- Develop a probabilistic model of the logic BI
- Design a probabilistic separation logic PSL
Recap: Bunched Implications and Separation Logics
What Goes into a Separation Logic?

one.

Transform input states to output states

two.

Assertions

three.

Program logic

Formulas describe pieces of program states

 Assertions specify pre- and post-conditions

Semantics defined by a model of BI (Pym and O’Hearn)
What Goes into a Separation Logic?

1. Programs

- Transform input states to output states
What Goes into a Separation Logic?

1. Programs
 - Transform input states to output states

2. Assertions
 - Formulas describe pieces of program states
 - Semantics defined by a model of BI (Pym and O’Hearn)
What Goes into a Separation Logic?

1. Programs
 - Transform input states to output states

2. Assertions
 - Formulas describe pieces of program states
 - Semantics defined by a model of BI (Pym and O’Hearn)

3. Program logic
 - Formulas describe programs
 - Assertions specify pre- and post-conditions
Classical Setting: Heaps

Program states \((s, h)\)

- **A store** \(s : X \rightarrow V\), map from variables to values
- **A heap** \(h : \mathbb{N} \rightarrow V\), partial map from addresses to values
Classical Setting: Heaps

Program states \((s, h)\)

- A store \(s : \mathcal{X} \rightarrow \mathcal{V}\), map from variables to values
- A heap \(h : \mathbb{N} \rightarrow \mathcal{V}\), partial map from addresses to values

Heap-manipulating programs

- Control flow: sequence, if-then-else, loops
- Read/write addresses in heap
- Allocate/free heap cells
Assertion Logic: Bunched Implications (BI)

Substructural logic (O’Hearn and Pym)

- Start with regular propositional logic ($\top, \bot, \land, \lor, \rightarrow$)
- Add a new conjunction (“star”): $P \ast Q$
- Add a new implication (“magic wand”): $P \rightarrow \ast Q$
Assertion Logic: Bunched Implications (BI)

Substructural logic (O’Hearn and Pym)

- Start with regular propositional logic ($\top, \bot, \land, \lor, \rightarrow$)
- Add a new conjunction ("star"): $P \ast Q$
- Add a new implication ("magic wand"): $P \rightarrow P$

Star is a multiplicative conjunction

- $P \land Q$: P and Q hold on the entire state
- $P \ast Q$: P and Q hold on disjoint parts of the entire state
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

States can be split into two "disjoint" states, one satisfying P and one satisfying Q.

Inductively define states that satisfy formulas:

- $s | = \top$ always
- $s | = \bot$ never
- $s | = P \land Q$ iff $s | = P$ and $s | = Q$
- $s | = P \ast Q$ iff $s_1 \circ s_2 \sqsubseteq s$ with $s_1 | = P$ and $s_2 | = Q$
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \preceq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., …)

Inductively define states that satisfy formulas
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ: S \times S \to S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

\[
\begin{align*}
 s \models \top & \quad \text{always} \\
 s \models \bot & \quad \text{never}
\end{align*}
\]
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set \mathcal{S} of states, pre-order \sqsubseteq on \mathcal{S}
- Partial operation $\circ : \mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ (assoc., comm., …)

Inductively define states that satisfy formulas

- $s \models \top$ always
- $s \models \bot$ never
- $s \models P \land Q$ iff $s \models P$ and $s \models Q$
- $s \models P \ast Q$ iff $s \sqsubseteq s_1 \circ s_2$ with $s_1 \models P$ and $s_2 \models Q$
Resource Semantics of BI (O’Hearn and Pym)

Suppose states form a pre-ordered, partial monoid

- Set S of states, pre-order \sqsubseteq on S
- Partial operation $\circ : S \times S \rightarrow S$ (assoc., comm., ...)

Inductively define states that satisfy formulas

- $s \models \top$ always
- $s \models \bot$ never
- $s \models P \land Q$ iff $s \models P$ and $s \models Q$
- $s \models P \ast Q$ iff $s_1 \circ s_2 \sqsubseteq s$ with $s_1 \models P$ and $s_2 \models Q$

State s can be split into two “disjoint” states, one satisfying P and one satisfying Q
Example: Heap Model of BI

Set of states: heaps

- \(S' = \mathbb{N} \rightarrow \mathcal{V} \), partial maps from addresses to values
Example: Heap Model of BI

Set of states: heaps

- $S = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

- $s_1 \circ s_2$ is defined to be union iff $\text{dom}(s_1) \cap \text{dom}(s_2) = \emptyset$
Example: Heap Model of BI

Set of states: heaps

- $S' = \mathbb{N} \rightarrow \mathcal{V}$, partial maps from addresses to values

Monoid operation: combine disjoint heaps

- $s_1 \circ s_2$ is defined to be union iff $\text{dom}(s_1) \cap \text{dom}(s_2) = \emptyset$

Pre-order: extend/project heaps

- $s_1 \sqsubseteq s_2$ iff $\text{dom}(s_1) \subseteq \text{dom}(s_2)$, and s_1, s_2 agree on $\text{dom}(s_1)$
Propositions for Heaps

Atomic propositions: “points-to”

- $x \mapsto v$ holds in heap s iff $x \in \text{dom}(s)$ and $s(x) = v$

Example axioms (not complete)

- Deterministic: $x \mapsto v \land y \mapsto w \land x = y \rightarrow v = w$
- Disjoint: $x \mapsto v \ast y \mapsto w \rightarrow x \neq y$
The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x := *e$
- Write to location: $*e := e'$
The Separation Logic Proper

Programs c from a basic imperative language

- Read from location: $x := *e$
- Write to location: $*e := e'$

Program logic judgments

$$\{ P \} \ c \ \{ Q \}$$

Reading

Executing c on any input state satisfying P leads to an output state satisfying Q, without invalid reads or writes.
Basic Proof Rules

Reading a location

\{ x \mapsto \nu \}

\{ x \mapsto \nu \wedge y = \nu \}

R/e.sc/a.sc/d.sc

Writing a location

\{ x \mapsto \nu \}

\{ x \mapsto \nu \}

R/e.sc/a.sc/d.sc
Basic Proof Rules

Reading a location

$$\{x \mapsto v\} \ y := *x \ \{x \mapsto v \land y = v\}$$

READ
Basic Proof Rules

Reading a location

\[\{ x \mapsto v \} \ y := *x \ \{ x \mapsto v \land y = v \} \]

Writing a location

\[\{ x \mapsto v \} \ *x := e \ \{ x \mapsto e \} \]
The Frame Rule

Properties about unmodified heaps are preserved

\[
\begin{align*}
\{ \! \{P\} \! \} \quad c \quad \{ \! \{Q\} \! \} \\
\quad c \text{ doesn’t modify } FV(R) \\
\{ \! \{P \ast R\} \! \} \quad c \quad \{ \! \{Q \ast R\} \! \}
\end{align*}
\]

\text{FRAME}
The Frame Rule

Properties about unmodified heaps are preserved

\[
\{ P \} \ c \ \{ Q \} \quad c \ \text{doesn’t modify} \ FV(R) \\
\{ P \ast R \} \ c \ \{ Q \ast R \} \quad \text{FRAME}
\]

So-called “local reasoning” in SL

- Only need to reason about part of heap used by \(c \)
- Note: doesn’t hold if \(\ast \) replaced by \(\land \), due to aliasing!
A Probabilistic Model of BI
States: Distributions over Memories

Memories (not heaps)

- Fix sets X of variables and V of values
- Memories indexed by domains $A \subseteq X$: $M(A) = A \rightarrow V$

Program states: randomized memories

- States are distributions over memories with same domain
- Formally: $S = \{ s | s \in \text{Distr}(M(A)), A \subseteq X \}$

- When $s \in \text{Distr}(M(A))$, write $\text{dom}(s)$ for A
Memories (not heaps)

- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$
States: Distributions over Memories

Memories (not heaps)
- Fix sets \mathcal{X} of variables and \mathcal{V} of values
- Memories indexed by domains $A \subseteq \mathcal{X}$: $\mathcal{M}(A) = A \rightarrow \mathcal{V}$

Program states: randomized memories
- States are distributions over memories with same domain
- Formally: $S = \{ s \mid s \in \text{Distr}(\mathcal{M}(A)), A \subseteq \mathcal{X} \}$
- When $s \in \text{Distr}(\mathcal{M}(A))$, write $\text{dom}(s)$ for A
Monoid: “Disjoint” Product Distribution

Intuition

- Two distributions can be combined iff domains are disjoint
- Combine by taking product distribution, union of domains
Monoid: “Disjoint” Product Distribution

Intuition
- Two distributions **can be combined** iff domains are disjoint
- Combine by taking product distribution, union of domains

More formally...
Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. If A, B are disjoint, then:

$$(s \circ s')(m \cup m') = s(m) \cdot s'(m')$$

for $m \in \mathcal{M}(A)$ and $m' \in \mathcal{M}(B)$. Otherwise, $s \circ s'$ is undefined.
Pre-Order: Extension/Projection

Intuition

- Define $s \sqsubseteq s'$ if s “has less information than” s'
- In probabilistic setting: s is a projection of s'

More formally...

Suppose that $s \in \text{Distr}(M(A))$ and $s' \in \text{Distr}(M(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in M(A)$, we have:

$$s(m) = \sum_{m' \in M(B)} s'(m \cup m')$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.

/ two.osf/four.osf
Pre-Order: Extension/Projection

Intuition
- Define $s \sqsubseteq s'$ if s “has less information than” s'
- In probabilistic setting: s is a projection of s'

More formally...
Suppose that $s \in \text{Distr}(\mathcal{M}(A))$ and $s' \in \text{Distr}(\mathcal{M}(B))$. Then $s \sqsubseteq s'$ iff $A \subseteq B$, and for all $m \in \mathcal{M}(A)$, we have:

$$s(m) = \sum_{m' \in \mathcal{M}(B)} s'(m \cup m').$$

That is, s is obtained from s' by marginalizing variables in $B \setminus A$.
Atomic Formulas

Equalities

- $e = e'$ holds in s iff all variables $FV(e, e') \subseteq \text{dom}(s)$, and e is equal to e' with probability 1 in s.
Atomic Formulas

Equalities

\[e = e' \text{ holds in } s \text{ iff all variables } FV(e, e') \subseteq \text{dom}(s), \text{ and } e \text{ is equal to } e' \text{ with probability } 1 \text{ in } s \]

Distribution laws

\[e \sim \text{Unif} \text{ holds in } s \text{ iff } FV(e) \subseteq \text{dom}(s), \text{ and } e \text{ is uniformly distributed (e.g., fair coin flip)} \]

\[e \sim \text{D} \text{ holds in } s \text{ iff all variables in } FV(e) \subseteq \text{dom}(s) \]
Example Axioms (not complete)

Distribution operations

\[x \sim D \land y \sim D \rightarrow x \land y \sim D \]

Equality and distributions

\[x = y \land x \sim \text{Unif} \rightarrow y \sim \text{Unif} \]

Uniformity and products

\[(x \sim \text{Unif} \ast y \sim \text{Unif}) \rightarrow (x,y) \sim \text{Unif} \times \text{Unif} \]

Uniformity and exclusive-or (\(\oplus\))

\[x \sim \text{Unif} \ast y \sim D \land z = x \oplus y \rightarrow z \sim \text{Unif} \ast y \sim D \]
Example Axioms (not complete)

Distribution operations

\[x \sim D \land y \sim D \rightarrow x \land y \sim D \]
Example Axioms (not complete)

Distribution operations

• $x \sim D \land y \sim D \rightarrow x \land y \sim D$

Equality and distributions

• $x = y \land x \sim \text{Unif} \rightarrow y \sim \text{Unif}$
Example Axioms (not complete)

Distribution operations

- $x \sim D \land y \sim D \rightarrow x \land y \sim D$

Equality and distributions

- $x = y \land x \sim \text{Unif} \rightarrow y \sim \text{Unif}$

Uniformity and products

- $(x \sim \text{Unif} \ast y \sim \text{Unif}) \rightarrow (x, y) \sim \text{Unif}_{B \times B}$
Example Axioms (not complete)

Distribution operations

- $x \sim D \land y \sim D \rightarrow x \land y \sim D$

Equality and distributions

- $x = y \land x \sim \text{Unif} \rightarrow y \sim \text{Unif}$

Uniformity and products

- $(x \sim \text{Unif} \ast y \sim \text{Unif}) \rightarrow (x, y) \sim \text{Unif}_{B \times B}$

Uniformity and exclusive-or (\oplus)

- $x \sim \text{Unif} \ast y \sim D \land z = x \oplus y \rightarrow z \sim \text{Unif} \ast y \sim D$
Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

- Pre-order is nontrivial
- Benefits: can describe a subset of the variables
- Necessary: other variables might not be independent!
Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap
Intuitionistic, or Classical?

Many SLs use classical version of BI (Boolean BI)

- Pre-order is discrete (trivial)
- Benefits: can describe heap domain exactly (e.g., empty)
- Drawbacks: must describe the entire heap

Our probabilistic model is for intuitionistic BI

- Pre-order is nontrivial
- Benefits: can describe a subset of the variables
- Necessary: other variables might not be independent!
A Probabilistic Separation Logic
A Toy Probabilistic Language

Program syntax

\[
\text{Exp} \ni e ::= x \in \mathcal{X} \mid tt \mid ff \mid e \land e' \mid e \lor e' \mid \cdots
\]

\[
\text{Com} \ni c ::= \text{skip} \mid x \leftarrow e \mid x \leftarrow \text{Unif} \mid c; c' \mid \text{if } e \text{ then } c \text{ else } c'
\]
A Toy Probabilistic Language

Program syntax

\[
\begin{align*}
\text{Exp} \ni e & ::= x \in \mathcal{X} \mid \text{tt} \mid \text{ff} \mid e \land e' \mid e \lor e' \mid \cdots \\
\text{Com} \ni c & ::= \text{skip} \mid x \leftarrow e \mid x \leftarrow \text{Unif} \mid c; c' \mid \text{if } e \text{ then } c \text{ else } c'
\end{align*}
\]
Program syntax

\[
\text{Exp} \ni e ::= x \in X \mid \text{tt} \mid \text{ff} \mid e \land e' \mid e \lor e' \mid \ldots
\]

\[
\text{Com} \ni c ::= \text{skip} \mid x \gets e \mid x \leftarrow \text{Unif} \mid c; c' \mid \text{if } e \text{ then } c \text{ else } c'
\]

Semantics: distribution transformers (Kozen)

\[
\lfloor c \rfloor : \text{Distr}(\mathcal{M}(X)) \rightarrow \text{Distr}(\mathcal{M}(X))
\]
Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$\{P\} \ c \ {Q}$
Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

$$\{P\} \ c \ \{Q\}$$

Validity

For all input states $s \in \text{Distr} (\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $\llbracket c \rrbracket s$ satisfies the post-condition $\llbracket c \rrbracket s \models Q$.
Program Logic Judgments in PSL

P and Q from probabilistic BI, c a probabilistic program

\[
\{P\} c \{Q\}
\]

Validity

For all input states $s \in \text{Distr}(\mathcal{M}(\mathcal{X}))$ satisfying the pre-condition $s \models P$, the output state $[c]s$ satisfies the post-condition $[c]s \models Q$.
Basic Proof Rules in PSL

Assignment

\[x \not\in \text{FV}(e) \]

\[\{\top\} \]

\[x \leftarrow e \]

\[\{x = e\} \]

Sampling

\[\{\top\} \]

\[x \overset{\text{Unif}}{\leftarrow} \]

\[\{x \sim \text{Unif}\} \]

\[S/a.sc/m.sc/p.sc \]

/three.osf/one.osf
Basic Proof Rules in PSL

Assignment

\[x \notin FV(e) \]

\[\{ \top \} x \leftarrow e \{ x = e \} \]

ASSN
Basic Proof Rules in PSL

Assignment

\[
x \notin FV(e) \\
\{\top\} \ x \leftarrow \ e \ \{x = e\} \quad \text{ASSN}
\]

Sampling

\[
\{\top\} \ x \leftarrow \Uni \ \{x \sim \Uni\} \quad \text{SAMP}
\]
Conditional Rule in PSL

\[Q \text{ is "supported"}
\]
\[
\{ e = tt \ast P \} \ c \ \{ e = tt \ast Q \}
\]
\[
\{ e = ff \ast P \} \ c' \ \{ e = ff \ast Q \}
\]
\[
\{ e \sim D \ast P \} \ \text{if } e \ \text{then } c \ \text{else } c' \ \{ e \sim D \ast Q \}
\]

Pre-conditions
▶ Inputs to branches derived from conditioning on \(e \)
▶ Independence ensures that \(P \) holds a/f_ter conditioning

Post-conditions
▶ Not all post-conditions \(Q \) can be soundly combined
▶ "Supported": \(Q \) describes unique distribution (Reynolds)
Conditional Rule in PSL

Q is “supported”

\[
\begin{align*}
\{ e = tt \ast P \} & \quad c \quad \{ e = tt \ast Q \} \\
\{ e = ff \ast P \} & \quad c' \quad \{ e = ff \ast Q \} \\
\{ e \sim D \ast P \} & \quad \text{if } e \text{ then } c \text{ else } c' \quad \{ e \sim D \ast Q \}
\end{align*}
\]

Pre-conditions

- Inputs to branches derived from \textit{conditioning} on \(e \)
- Independence ensures that \(P \) holds after conditioning
Conditional Rule in PSL

\[Q \text{ is “supported”} \]
\[\{ e = tt \ast P \} \quad c \quad \{ e = tt \ast Q \} \]
\[\{ e = ff \ast P \} \quad c' \quad \{ e = ff \ast Q \} \]
\[\{ e \sim D \ast P \} \quad \text{if } e \text{ then } c \text{ else } c' \quad \{ e \sim D \ast Q \} \]

Pre-conditions
- Inputs to branches derived from conditioning on \(e \)
- Independence ensures that \(P \) holds after conditioning

Post-conditions
- Not all post-conditions \(Q \) can be soundly combined
- “Supported”: \(Q \) describes unique distribution (Reynolds)
The Frame Rule in PSL

\[
\begin{align*}
\{P\} c \{Q\} & \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{P \star R\} c \{Q \star R\} & \quad \text{FRAME}
\end{align*}
\]

Side conditions
The Frame Rule in PSL

\[
\begin{align*}
\{P\} c \{Q\} & \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{P \ast R\} c \{Q \ast R\} & \quad \text{FRAME}
\end{align*}
\]

Side conditions

1. Variables in \(R\) are not modified (standard in SL)
The Frame Rule in PSL

\[
\begin{align*}
\{ P \} \ c \ \{ Q \} & \quad FV(R) \cap MV(c) = \emptyset \\
| = P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{ P \ast R \} \ c \ \{ Q \ast R \} & \quad \text{FRAME}
\end{align*}
\]

Side conditions

1. Variables in \(R \) are not modified (standard in SL)
2. \(P \) describes all variables that might be read
The Frame Rule in PSL

\[
\begin{align*}
\{ P \} \ c \ \{ Q \} & \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{ P * R \} \ c \ \{ Q * R \} &
\end{align*}
\]

Side conditions

1. Variables in \(R \) are not modified (standard in SL)
2. \(P \) describes all variables that might be read
3. Everything in \(Q \) is freshly written, or in \(P \)
The Frame Rule in PSL

\[
\{ P \} \ c \ \{ Q \} \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{ P * R \} \ c \ \{ Q * R \}
\]

Side conditions

1. Variables in \(R \) are not modified (standard in SL)
2. \(P \) describes all variables that might be read
3. Everything in \(Q \) is freshly written, or in \(P \)

Variables in the post \(Q \) were independent of \(R \), or are newly independent of \(R \)
Example: Deriving a Better Sampling Rule

Given rules:

\[
\begin{align*}
\{P\} & \ c \ \{Q\} & \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{P \ast R\} & \ c \ \{Q \ast R\} \quad \text{FRAME} \\
\{\top\} & \ x \ \xleftarrow{\text{SAMP}} \ \text{Unif} \ \{x \sim \text{Unif}\}
\end{align*}
\]
Example: Deriving a Better Sampling Rule

Given rules:

\[
\begin{align*}
\{P\} c \{Q\} & \quad FV(R) \cap MV(c) = \emptyset \\
\models P \rightarrow RV(c) \sim D & \quad FV(Q) \subseteq RV(c) \cup WV(c) \\
\{P * R\} c \{Q * R\} & \quad \text{FRAME}
\end{align*}
\]

\[
\{T\} x \leftarrow \text{Unif} \{x \sim \text{Unif}\} \quad \text{SAMP}
\]

Can derive:

\[
\begin{align*}
x \notin FV(R) & \quad \{R\} x \leftarrow \text{Unif} \{x \sim \text{Unif} * R\} \\
& \quad \text{SAMP*}
\end{align*}
\]
Example: Deriving a Better Sampling Rule

Given rules:

\[
\begin{align*}
\{P\} & \xrightarrow{c} \{Q\} \\
\models P \rightarrow RV(c) \sim D \\
FV(R) \cap MV(c) = \emptyset \\
FV(Q) \subseteq RV(c) \cup WV(c) \\
\{P \ast R\} & \xrightarrow{c} \{Q \ast R\}
\end{align*}
\]

\[
\begin{align*}
\{\top\} & \xleftarrow{\$} \text{Unif} \{x \sim \text{Unif}\}
\end{align*}
\]

Can derive:

\[
\begin{align*}
x \notin FV(R) \\
\{R\} & \xleftarrow{\$} \text{Unif} \{x \sim \text{Unif} \ast R\}
\end{align*}
\]

Intuitively: fresh random sample is independent of everything
Key Property for Soundness: Restriction

Theorem (Restriction)

Let P be any formula of probabilistic BI, and suppose that $s \models P$. Then there exists $s' \sqsubseteq s$ such that $s' \models P$ and $\text{dom}(s') = \text{dom}(s) \cap \text{FV}(P)$.

Intuition

- The only variables that “matter” for P are $\text{FV}(P)$
- Tricky for implications; proof “glues” distributions
Verifying an Example
One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- **Input:** a message \(m \in \mathbb{B} \)
- **Output:** a ciphertext \(c \in \mathbb{B} \)
- **Idea:** encrypt by taking XOR with a uniformly random key \(k \)
One-Time-Pad (OTP)

Possibly the simplest encryption scheme

- Input: a message $m \in \mathbb{B}$
- Output: a ciphertext $c \in \mathbb{B}$
- Idea: encrypt by taking xor with a uniformly random key k

The encoding program:

\[
\begin{align*}
 k & \leftarrow \text{Unif}_\mathbb{B} \\
 c & \leftarrow k \oplus m
\end{align*}
\]
How to Formalize Security?

Method /one.osf: Uniformity

▶ Show that \(c \) is uniformly distributed
▶ Always the same, no matter what the message \(m \) is

Method /two.osf: Input-output independence

▶ Assume that \(m \) is drawn from some (unknown) distribution
▶ Show that \(c \) and \(m \) are independent

/three.osf/eight.osf
How to Formalize Security?

Method 1: Uniformity

- Show that c is uniformly distributed
- Always the same, no matter what the message m is
How to Formalize Security?

Method 1: Uniformity

- Show that c is uniformly distributed
- Always the same, no matter what the message m is

Method 2: Input-output independence

- Assume that m is drawn from some (unknown) distribution
- Show that c and m are independent
Proving Input-Output Independence for OTP in PSL

\[k \leftarrow \text{Unif}_\mathcal{D} \]

\[c \leftarrow k \oplus m \]
\{m \sim D\}

\[k \xleftarrow{\$} \text{Unif}_\oplus \]

\[c \xleftarrow{} k \oplus m \]

assumption
Proving Input-Output Independence for OTP in PSL

\{m \sim D\} \\
k \leftarrow \text{Unif} \\
\{m \sim D \land k \sim \text{Unif}\} \\
c \leftarrow k \oplus m
Proving Input-Output Independence for OTP in PSL

\{ m \sim D \} \quad \text{assumption}

k \leftarrow \text{Unif}_{\omega}

\{ m \sim D \times k \sim \text{Unif} \} \quad [\text{SAMP}^*]

c \leftarrow k \oplus m

\{ m \sim D \times k \sim \text{Unif} \land c = k \oplus m \} \quad [\text{ASSN}^*]
\{ m \sim D \}\quad \text{assumption}
\quad
k \sample \Unif
\quad
\{ m \sim D * k \sim \Unif \}
\quad [\text{SAMP*}]
\quad
\begin{align*}
c & \leftarrow k \oplus m \\
\{ m \sim D * k \sim \Unif \land c = k \oplus m \}
\quad [\text{ASSN*}] \\
\{ m \sim D * c \sim \Unif \}
\quad \text{XOR axiom}
Recent Directions:
Conditional Independence
What is Conditional Independence (CI)?

Two random variables x and y are independent conditioned on z if they are only correlated through z: fixing any value of z, the value of x gives no information about the value of y.
Maps of type $\mathcal{M}(S) \rightarrow \text{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must “preserve input to output”
- Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \text{Distr}(\mathcal{M}(T))$
Main Idea: Lift to Markov Kernels

Maps of type $\mathcal{M}(S) \rightarrow \text{Distr}(\mathcal{M}(T))$

- $S \subseteq T$: maps must “preserve input to output”
- Plain distributions encoded as $\mathcal{M}(\emptyset) \rightarrow \text{Distr}(\mathcal{M}(T))$

CI expressible in terms of kernels

Let \odot be Kleisli composition and \otimes be “parallel” composition. If we can decompose:

$$\mu = \mu_z \odot (\mu_x \otimes \mu_y)$$

with $\mu_x : \mathcal{M}(z) \rightarrow \text{Distr}(\mathcal{M}(x, z))$, $\mu_y : \mathcal{M}(z) \rightarrow \text{Distr}(\mathcal{M}(y, z))$, then x and y are independent conditioned on z.
DIBI: Dependent and Independent BI

Main idea: add a non-commutative conjunction

\[P \# Q \]

- States are now kernels
- \(P \ast Q \): parallel composition of kernels
- \(P \# Q \): Kleisli composition of kernels

Interaction: reverse exchange law

\[(P \# Q) \ast (R \# S) \vdash (P \ast R) \# (Q \ast S)\]

Reverse of the usual direction (cf. Concurrent Kleene Algebra)
Main idea: add a non-commutative conjunction $P ; Q$

- States are now kernels
- $P \ast Q$: parallel composition of kernels
- $P ; Q$: Kleisli composition of kernels
Main idea: add a non-commutative conjunction $P ; Q$

- States are now kernels
- $P * Q$: parallel composition of kernels
- $P ; Q$: Kleisli composition of kernels

Interaction: reverse exchange law

$$(P ; Q) * (R ; S) \vdash (P * R) ; (Q * S)$$

Reverse of the usual direction (cf. Concurrent Kleene Algebra)
A Probabilistic Separation Logic (POPL 2020)
- Extensions to PSL: deterministic variables, loops, etc.
- Many examples from cryptography, security of ORAM

A Logic to Reason about Dependence and Independence
- Details about DIBI, sound and complete Hilbert system
- Models capturing join dependency in relational algebra
- A separation logic (CPSL) based on DIBI
- arXiv: available soon, or send an email
A Probabilistic Separation Logic