Proving Uniformity and Independence by Self-Composition and Coupling

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu*
Pierre-Yves Strub
A puzzle

A random walk on a cycle

- Start at position $s \in \{0, 1, \ldots, n - 1\}$
- Each iteration, flip a fair coin
 - Heads: increment position (modulo n)
 - Tails decrement position (modulo n)
- Return: last edge $(r, r + 1)$ to be traversed

A question

What is the distribution of the returned edge, and how does it depend on the starting position s?
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform: starting position \(s \) doesn't matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform: the starting position s doesn't matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform: the starting position s doesn't matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform: starting position s doesn't matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform. Starting position s doesn't matter!
Somewhat surprisingly, the distribution of the final edge is uniform: starting position s doesn't matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform: starting position doesn’t matter!
A puzzle

Somewhat surprisingly, the distribution of the final edge is uniform. Starting position doesn't matter!
A puzzle

Somewhat surprisingly

Distribution of final edge is **uniform**: Starting position s doesn’t matter!
Basic properties of probabilistic programs

Uniformity of a variable X

For any two values w, v in the (finite) range of X, we have:

$$\Pr[X = w] = \Pr[X = v]$$

in output distribution.
Basic properties of probabilistic programs

Uniformity of a variable X
For any two values w, v in the (finite) range of X, we have:
\[
\Pr[X = w] = \Pr[X = v]
\]
in output distribution.

Independence of two variables X, Y
For any two values w, v, we have:
\[
\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]
\]
in output distribution.
Basic properties of probabilistic programs

Uniformity of a variable \(X \)
For any two values \(w, v \) in the (finite) range of \(X \), we have:

\[
\Pr[X = w] = \Pr[X = v]
\]

in output distribution.

Independence of two variables \(X, Y \)
For any two values \(w, v \), we have:

\[
\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]
\]

in output distribution.

Can be quite subtle to verify!
The idea today

Use logic for relational verification to verify uniformity and independence
A crash course: the relational logic pRHL
A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

\[c ::= x \leftarrow e \mid x \leftarrow \text{flip}(p) \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c \]
A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

\[c ::= x \leftarrow e \mid x \leftarrow \text{flip}(p) \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c \]

pRHL is a program logic that is:

- Probabilistic: Programs can draw samples
A curious program logic: pRHL [Barthe, Grégoire, Zanella-Béguelin]

pWhile: An imperative language with random sampling

\[c ::= x \leftarrow e \mid x \leftarrow \text{flip}(p) \mid \text{if } e \text{ then } c \text{ else } c \mid \text{while } e \text{ do } c \mid \text{skip} \mid c; c \]

pRHL is a program logic that is:

- Probabilistic: Programs can draw samples
- Relational: Describe executions of two programs
Judgments in pRHL

\{ P(in\langle 1 \rangle, in\langle 2 \rangle) \} \ c \sim \ c' \ \{ Q(out\langle 1 \rangle, out\langle 2 \rangle) \}
J udgments in pRHL

\{ P(\langle 1 \rangle, \langle 2 \rangle) \} \ c \sim \ c' \ \{ Q(\langle 1 \rangle, \langle 2 \rangle) \}

A ssertions

- Non-probabilistic
- FO formulas over program variables tagged with \langle 1 \rangle or \langle 2 \rangle
Judgments in pRHL

\[\{ P(\text{in} \langle 1 \rangle, \text{in} \langle 2 \rangle) \} \ c \sim c' \ \{ Q(\text{out} \langle 1 \rangle, \text{out} \langle 2 \rangle) \} \]

Assertions

- Non-probabilistic
- FO formulas over program variables tagged with \(\langle 1 \rangle \) or \(\langle 2 \rangle \)
Judgments in pRHL

\{ P(\text{in}\langle 1 \rangle, \text{in}\langle 2 \rangle) \} \ c \sim c' \ \{ Q(\text{out}\langle 1 \rangle, \text{out}\langle 2 \rangle) \}

Assertions

- Non-probabilistic
- FO formulas over program variables tagged with \langle 1 \rangle or \langle 2 \rangle

Deep connection to probabilistic couplings

- Proofs specify how to correlate random samplings in runs
- Reduce sources of randomness, simplify verification
For our purposes today: equality of distributions

If this is provable:

\[\vdash \{ P \} \; c \sim c' \; \{ e\langle 1 \rangle = e'\langle 2 \rangle \} \]

Then:

On any two input memories related by \(P \), the distribution of \(e \) in the first output is equal to the distribution of \(e' \) in the second output.
In particular: express equality of probabilities

If this is provable for booleans b, b':

$$\vdash \{P\} \ c \sim c' \ \{b\langle 1 \rangle = b'\langle 2 \rangle\}$$

Then:

On any two input memories related by P, the probability of b in the first output is equal to the probability of b' in the second output.
Random sampling rules in pRHL

Simplified version

\[\text{FlipEq} \quad \Downarrow \{ \top \} \quad x \overset{\$}{\leftarrow} \text{flip}(p) \sim x' \overset{\$}{\leftarrow} \text{flip}(p) \quad \{x(1) = x'(2)\} \]

\[\text{FlipNeg} \quad \Downarrow \{ \top \} \quad x \overset{\$}{\leftarrow} \text{flip}(p) \sim x' \overset{\$}{\leftarrow} \text{flip}(1 - p) \quad \{x(1) = \neg x'(2)\} \]
Random sampling rules in pRHL

Simplified version

FlipEq

\[
\begin{array}{l}
\vdash \{\top\} \quad x \leftarrow \text{flip}(p) \sim x' \leftarrow \text{flip}(p) \quad \{x(1) = x'(2)\}
\end{array}
\]

FlipNeg

\[
\begin{array}{l}
\vdash \{\top\} \quad x \leftarrow \text{flip}(p) \sim x' \leftarrow \text{flip}(1 - p) \quad \{x(1) = \neg x'(2)\}
\end{array}
\]

Reading: for any \(p \in [0, 1]\),

1. **[FlipEq]**: Distributions of \(\text{flip}(p)\) and \(\text{flip}(p)\) are equal
2. **[FlipNeg]**: Distributions of \(\text{flip}(p)\) and negated \(\text{flip}(1 - p)\) are equal
Rest of rules are standard (≈ Hoare logic)

Assignments

\[\vdash \{Q[e(1), e'(2)/x(1), x'(2)]\} \quad x \leftarrow e_1 \sim x' \leftarrow e_2 \quad \{Q\}\]

Sequencing

\[\vdash \{P\} \quad c_1 \sim c'_1 \quad \{Q\} \quad \vdash \{Q\} \quad c_2 \sim c'_2 \quad \{R\}\]

\[\vdash \{P\} \quad c_1; c_2 \sim c'_1; c'_2 \quad \{R\}\]

Loops

\[\vdash \{P \land b(1)\} \quad c \sim c' \quad \{P\} \quad \models P \implies b(1) = b'(2)\]

\[\vdash \{P\} \quad \text{while } b \text{ do } c \sim \text{while } b' \text{ do } c' \quad \{P \land \neg b(1)\}\]
Rest of rules are standard (≈ Hoare logic)

Assignments

\[
\frac{\infer{\{Q[e'\langle 2\rangle/x'\langle 1\rangle, x'\langle 2\rangle]\}}{\text{ASSN}}}{x \leftarrow e_1 \sim x' \leftarrow e_2 \{Q}\}
\]

Sequencing

\[
\frac{\infer{\{P\}}{\text{SEQ}}}{c_1 \sim c'_1 \{Q\} \quad \infer{\{Q\}}{c_2 \sim c'_2 \{R\}} \quad \infer{\{P\}}{c_1; c_2 \sim c'_1; c'_2 \{R\}}}
\]

Loops

\[
\frac{\infer{\{P\}}{\text{WHILE}}}{\{P \land b'\langle 1\rangle\} \quad c \sim c' \{P\} \quad \Longrightarrow \quad b'\langle 2\rangle \quad \infer{\{P\}}{\text{while } b \text{ do } c \sim \text{while } b' \text{ do } c' \{P \land \neg b'\langle 1\rangle\}}}
\]
Benefits of pRHL

Probabilistic properties without probabilistic reasoning

- Abstract away all probabilities
- All reasoning is about relation between samples

Highly similar to Hoare logic

- Most things “just work”
- Compositional reasoning
Benefits of pRHL

Probabilistic properties without probabilistic reasoning

- Abstract away all probabilities
- All reasoning is about relation between samples

Highly similar to Hoare logic

- Most things “just work”
- Compositional reasoning

Apply to non-relational properties, like uniformity and independence.
Verifying uniformity: simulating a fair coin
The algorithm

Goal
Generate one fair coin flip, using only coin flips with a fixed bias $p \in (0, 1)$.

Procedure
1. Flip two coins with bias p
2. Re-flip as long as they are equal
3. Return the first coin flip the first time they are different
Consider the program $fair$:

\[
x \leftarrow tt;
y \leftarrow tt;
\]

while $x = y$ do

\[
x \leftarrow \text{flip}(p);
y \leftarrow \text{flip}(p);
\]

return(x)

To show: generates fair coin flip

Distribution of return value is uniform
Observation: uniformity can be proved in pRHL

For every two booleans w, v, show:

\[
\vdash \{ p(1) = p(2) \} \quad \text{fair} \sim \text{fair} \quad \{(x(1) = w) \iff (x(2) = v)\}
\]

Reading: for every two booleans w, v,

\[
\Pr[x = w] = \Pr[x = v] \quad \text{in the output of fair.}
\]

Four choices in all for w, v

- We show the cases with $w \neq v$
Step 1: rearrange program

Two equivalent programs: $fair$ and $fair'$

\[
\begin{align*}
x &\leftarrow tt; \\
y &\leftarrow tt; \\
\text{while } x = y \text{ do} \\
&\quad x \leftarrow \text{flip}(p); \\
&\quad y \leftarrow \text{flip}(p); \\
&\quad \text{return}(x)
\end{align*}
\]

\[
\begin{align*}
x &\leftarrow tt; \\
y &\leftarrow tt; \\
\text{while } x = y \text{ do} \\
&\quad y \leftarrow \text{flip}(p); \\
&\quad x \leftarrow \text{flip}(p); \\
&\quad \text{return}(x)
\end{align*}
\]
Step 1: rearrange program

Two equivalent programs: \textit{fair} and \textit{fair}'

\begin{align*}
 x & \leftarrow \texttt{tt}; \\
 y & \leftarrow \texttt{tt}; \\
 \text{while } x = y \text{ do} \\
 & \quad x \leftarrow \text{flip}(p); \\
 & \quad y \leftarrow \text{flip}(p); \\
 & \quad \text{return}(x)
\end{align*}

\begin{align*}
 x & \leftarrow \texttt{tt}; \\
 y & \leftarrow \texttt{tt}; \\
 \text{while } x = y \text{ do} \\
 & \quad y \leftarrow \text{flip}(p); \\
 & \quad x \leftarrow \text{flip}(p); \\
 & \quad \text{return}(x)
\end{align*}
Step 1: rearrange program

Two equivalent programs: *fair* and *fair'*

\[
\begin{align*}
x & \leftarrow \text{tt}; \\
y & \leftarrow \text{tt}; \\
\text{while } x = y \text{ do} \\
x & \leftarrow \text{flip}(p); \\
y & \leftarrow \text{flip}(p); \\
\text{return}(x)
\end{align*}
\]

\[
\begin{align*}
x & \leftarrow \text{tt}; \\
y & \leftarrow \text{tt}; \\
\text{while } x = y \text{ do} \\
y & \leftarrow \text{flip}(p); \\
x & \leftarrow \text{flip}(p); \\
\text{return}(x)
\end{align*}
\]
Step 1: rearrange program

Two equivalent programs: \textit{fair} and \textit{fair'}

\[
\begin{align*}
x & \leftarrow tt; \\
y & \leftarrow tt; \\
\text{while } x = y \text{ do} \\
& \quad x \leftarrow \text{flip}(p); \\
& \quad y \leftarrow \text{flip}(p); \\
& \quad \text{return}(x)
\end{align*}
\]

For the cases \(w \neq v\), suffices to show:

\[
\vdash \{p(1) = p(2)\} \quad \text{fair} \sim \text{fair'} \quad \{x(1) = \overline{x(2)}\}
\]
Step 2: apply the loop rule

\[
\text{while } x = y \text{ do } \\
\quad x \leftarrow \text{flip}(p); \\
\quad y \leftarrow \text{flip}(p); \\
\text{return}(x)
\]
Step 2: apply the loop rule

while \(x = y \) do
\[
\begin{align*}
& x \leftarrow \text{flip}(p); \\
& y \leftarrow \text{flip}(p); \\
& \text{return}(x)
\end{align*}
\]

while \(x = y \) do
\[
\begin{align*}
& y \leftarrow \text{flip}(p); \\
& x \leftarrow \text{flip}(p); \\
& \text{return}(x)
\end{align*}
\]

In the body: apply [FLIPEQ] for both pairs of samples
Step 2: apply the loop rule

while $x = y$ do
 $x \leftarrow \text{flip}(p)$;
 $y \leftarrow \text{flip}(p)$;
return(x)

while $x = y$ do
 $y \leftarrow \text{flip}(p)$;
 $x \leftarrow \text{flip}(p)$;
return(x)

In the body: apply [FLIP_EQ] for both pairs of samples

- We have: $x\langle 1 \rangle = y\langle 2 \rangle$
Step 2: apply the loop rule

while $x = y$ do
 $x \leftarrow \text{flip}(p)$;
 $y \leftarrow \text{flip}(p)$;
return(x)

while $x = y$ do
 $y \leftarrow \text{flip}(p)$;
 $x \leftarrow \text{flip}(p)$;
return(x)

In the body: apply \texttt{[FLIPEQ]} for both pairs of samples

- We have: $x\langle 1 \rangle = y\langle 2 \rangle$
- And: $x\langle 2 \rangle = y\langle 1 \rangle$
Step 2: apply the loop rule

while $x = y$ do
 $x \leftarrow \text{flip}(p);$
 $y \leftarrow \text{flip}(p);$
 return(x)

In the body: apply [FLIPEQ] for both pairs of samples

- We have: $x\langle 1 \rangle = y\langle 2 \rangle$
- And: $x\langle 2 \rangle = y\langle 1 \rangle$

Establishes main invariant:

\[
x\langle 2 \rangle = (\text{if } x\langle 1 \rangle = y\langle 1 \rangle \text{ then } y\langle 2 \rangle \text{ else } \neg x\langle 1 \rangle)
\]
Step 3: putting it all together

Applying [ASSN], [SEQ] shows:

\[\vdash \{ p'(1) = p'(2) \} \quad \text{fair} \sim \text{fair} \quad \{(x'(1) = w) \iff (x'(2) = v)\} \]

when \(w \neq v \); can also show same judgment when \(w = v \).

Conclude

\textit{fair} returns a uniform boolean
Extensions:
verifying independence
Verifying independence: the easier way

Observation: reduce independence to uniformity

\[(x, y)\] is uniform over pairs \[\Downarrow\] \[x\] and \[y\] are independent

Limitation

- Only can show independence for uniform variables
Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

\[c \sim c[1]; c[2] \]
Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$c \sim c[1] ; c[2]$$

Independence of two variables X, Y

For any two values w, v, we have:

$$\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]$$

in output distribution.
Verifying independence: the harder way

Use self-composition

- Let \(c[1], c[2] \) be two copies of \(c \) with disjoint variables
- Prove a pRHL judgment relating

\[
c \sim c[1]; c[2]
\]

Independence of two variables \(X, Y \)

For any two values \(w, v \), we have:

\[
\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]
\]

in output distribution.
Verifying independence: the harder way

Use self-composition

- Let \(c[1], c[2] \) be two copies of \(c \) with disjoint variables
- Prove a \(\text{pRHL} \) judgment relating

\[
c \sim c[1]; c[2]
\]

Independence of two variables \(X, Y \)
For any two values \(w, v \), we have:

\[
\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]
\]

in output distribution.
Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$c \sim c[1]; c[2]$$

Independence of two variables X, Y

For any two values w, v, we have:

$$\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]$$

in output distribution.
Verifying independence: the harder way

Use self-composition

- Let $c[1], c[2]$ be two copies of c with disjoint variables
- Prove a pRHL judgment relating

$$c \sim c[1]; c[2]$$

Independence of two variables X, Y

For any two values w, v, we have:

$$\Pr[X = w \land Y = v] = \Pr[X = w] \cdot \Pr[Y = v]$$

in output distribution.

Benefits

- Can prove independence for non-uniform variables
- Similar ideas can cover conditional independence
Summing up
See the paper for

Lots more examples

- Cycle random walk
- Pairwise and k-wise independence
- Bayesian network
- Ballot theorem

Details about the implementation

- Most examples formalized in EasyCrypt framework
Future directions

• Automate this approach
• Explore relational verification for non-relational properties
• Integrate with more general probabilistic verification tools
Proving Uniformity and Independence by Self-Composition and Coupling

Gilles Barthe
Thomas Espitau
Benjamin Grégoire
Justin Hsu*
Pierre-Yves Strub